Binh Ho

Notes on Time Series

\(\newcommand{\abs}[1]{\lvert#1\rvert}\) \(\newcommand{\norm}[1]{\lVert#1\rVert}\) \(\newcommand{\innerproduct}[2]{\langle#1, #2\rangle}\) \(\newcommand{\Tr}[1]{\operatorname{Tr}\mleft(#1\mright)}\) \(\DeclareMathOperator*{\argmin}{argmin}\) \(\DeclareMathOperator*{\argmax}{argmax}\) \(\DeclareMathOperator{\diag}{diag}\) \(\newcommand{\converge}[1]{\xrightarrow{\makebox[2em][c]{\)\scriptstyle#1\(}}}\) \(\newcommand{\quotes}[1]{``#1''}\) \(\newcommand\ddfrac[2]{\frac{\displaystyle #1}{\displaystyle #2}}\) \(\newcommand{\vect}[1]{\boldsymbol{\mathbf{#1}}}\) \(\newcommand{\E}{\mathbb{E}}\) \(\newcommand{\Var}{\mathrm{Var}}\) \(\newcommand{\Cov}{\mathrm{Cov}}\) \(\renewcommand{\N}{\mathbb{N}}\) \(\renewcommand{\Z}{\mathbb{Z}}\) \(\renewcommand{\R}{\mathbb{R}}\) \(\newcommand{\Q}{\mathbb{Q}}\) \(\newcommand{\C}{\mathbb{C}}\) \(\newcommand{\bbP}{\mathbb{P}}\) \(\newcommand{\rmF}{\mathrm{F}}\) \(\newcommand{\iid}{\mathrm{iid}}\) \(\newcommand{\distas}[1]{\overset{#1}{\sim}}\) \(\newcommand{\Acal}{\mathcal{A}}\) \(\newcommand{\Bcal}{\mathcal{B}}\) \(\newcommand{\Ccal}{\mathcal{C}}\) \(\newcommand{\Dcal}{\mathcal{D}}\) \(\newcommand{\Ecal}{\mathcal{E}}\) \(\newcommand{\Fcal}{\mathcal{F}}\) \(\newcommand{\Gcal}{\mathcal{G}}\) \(\newcommand{\Hcal}{\mathcal{H}}\) \(\newcommand{\Ical}{\mathcal{I}}\) \(\newcommand{\Jcal}{\mathcal{J}}\) \(\newcommand{\Lcal}{\mathcal{L}}\) \(\newcommand{\Mcal}{\mathcal{M}}\) \(\newcommand{\Pcal}{\mathcal{P}}\) \(\newcommand{\Ocal}{\mathcal{O}}\) \(\newcommand{\Qcal}{\mathcal{Q}}\) \(\newcommand{\Ucal}{\mathcal{U}}\) \(\newcommand{\Vcal}{\mathcal{V}}\) \(\newcommand{\Ncal}{\mathcal{N}}\) \(\newcommand{\Tcal}{\mathcal{T}}\) \(\newcommand{\Xcal}{\mathcal{X}}\) \(\newcommand{\Ycal}{\mathcal{Y}}\) \(\newcommand{\Zcal}{\mathcal{Z}}\) \(\newcommand{\Scal}{\mathcal{S}}\) \(\newcommand{\shorteqnote}[1]{ & \textcolor{blue}{\text{\small #1}}}\) \(\newcommand{\qimplies}{\quad\Longrightarrow\quad}\) \(\newcommand{\defeq}{\stackrel{\triangle}{=}}\) \(\newcommand{\longdefeq}{\stackrel{\text{def}}{=}}\) \(\newcommand{\equivto}{\iff}\)

to be updated!

Autocovariance, autocorrelation function

Given $\Cov(a X_1 + bX_2, cY_1 + d_Y2) = ac \Cov(X_1, X_2) + ad \Cov(X_1, Y_2) + bc \Cov(X_2, Y_1) + bd \Cov(X_2, Y_2)$ or more general \(\Cov(\sum_{j=1}^{s} a_j W_j, \sum_{k=1}^{t} b_k W_k) = \sum_{j=1}^{s} \sum_{k=1}^{t} a_j b_k \Cov(W_j, W_k)\)

Autocovariance is defined as

\[\gamma_X(s, t) = \Cov(X_s, X_t) = \E[(X_s - \E[X_s])(X_t - \E[X_t])]\]

Given weakly stationary time series, then for all $t \in T$, $\E[X_t] = \mu$ and $\Var[X_t] = \sigma^2 \abs{t-s}$

Given two time series ${X_s}$ and ${Y_t}$ with $\Var(X_s) < \infty$ and $\Var(Y_t) < \infty$, the autocorrelation is defined as

\[\gamma_{X, Y}(s, t) = \Cov[(X_s - \E[X_s])(Y_t - \E[Y_t])]\]